Improved electron beam quality from shock-induced density downramp injection

Kelly Swanson

BELLA Center, Lawrence Berkeley National Laboratory
AAC 2016

This work was funded by the Office of High Energy Physics, Office of Science, U.S. Department of Energy under Contract Number DE-AC02-05CH11231; US DOE National Nuclear Security Administration, Defense Nuclear Nonproliferation R&D (NA22) as well as the National Science Foundation
Applications require stable, small energy spread, high quality electron beams

Multistage, high-energy accelerator*

- Requires small energy spread and low divergence to capture charge efficiently in successive stages

LPA-based free electron laser

- Small energy spread beams reduce gain length*
- Small divergence minimizes aberrations from downstream components

*Courtesy of S. K. Barber
Injection is facilitated by density downramp

- Local wake phase:
 \[\varphi = k_p(z)(z - ct) \text{ where } k_p(z) \propto \sqrt{n(z)} \]

- Wake phase velocity \(\beta_p \):
 \[
 \beta_p = \frac{\omega_p}{ck_p} = \frac{-\partial_t \varphi}{c \partial_z \varphi}
 \]

 \[
 = \beta_g \left(1 + \xi \frac{1}{n} \frac{dn}{dz} \right)^{-1}
 \]

- During downramp, \(\beta_p \) decreases, \(\rightarrow \) reduced trapping threshold

 \(\xi = z - ct < 0 \)

Injection happens only during downramp
 \(\rightarrow \) Small energy spreads

Investigated shock’s effect on beam quality

• Shock formed by inserting razor blade into hydrogen gas flow
 Schmid, K. et al., Phys. Rev. STAB (2010),
 Buck, A. et al., PRL (2013)

• Density profile measured using probe beam and wavefront sensor
Shock angle is dependent on blade location

- Simulations show shock angle caused by ratio of exit and ambient pressure and gas expansion/compression
- Observed shock front angle α changes with blade position

Mao, H.-S. et al., in progress

Swanson, K. et al., in progress
Density profiles are also dependent on blade location

- Parameters n_1, n_2, L_{acc} dependent on blade position (Hai-En Tsai: L_{high})
- L_{shock} stayed constant at $\sim 100\mu\text{m}$
 (wavefront imaging resolution $\sim 35\mu\text{m}$)
Using density profiles, we can estimate energy and charge.

• Energy can be estimated*:

\[W \approx eEL \propto \sqrt{n_2 L_{acc}} \]

\[\Delta E = 10\text{MeV} \]

• Charge can also be estimated:

\[Q \propto n\left(\lambda_{p,2} - \lambda_{p,1}\right)^2 \]

Divergence scales with energy as expected

• Motion of electrons in accelerating field E_z and focusing force

$$m \frac{d \gamma \vec{v}}{dt} = eE_z \hat{z} - \frac{mw^2}{2} r\hat{r}$$

• Solving differential equation gives divergence scaling:

$$\theta \approx \frac{1}{c} \frac{dr(t)}{dt} \propto \gamma^{-3/4}$$

• Consistent with matched propagation

Swanson, K. et al., in progress
On-axis electron beam propagation occurs when shock front perpendicular to laser

- Laser refracted when passing through gas profile and shock front
- Electron beams follow laser refraction

→ Electron steering

Swanson, K. et al., in progress
Transverse ellipticity can be tuned using shock front angle

- Measure of ellipticity: $\theta_y - \theta_x$
 - Influenced by shock front angle
- Round beams when shock perpendicular to laser

- Not due to laser polarization

Swanson, K. et al., in progress
Steering and energy spread influence beam shape

- Amount of electron beam steering is energy-dependent
 - Higher energy beams are steered less
 - Elliptical beams

Swanson, K. et al., in progress
Produced tunable electron beams with reduced ellipticity and off-axis steering

- Electron beam charge, energy, divergence can be tuned with blade position
- Stable: <1mrad pointing fluctuation
- Steering and ellipticity tuned with shock front angle

Beams good for applications

\[
E = 65 \pm 4 \text{ MeV} \\
Q = 16 \pm 2 \text{ pC}
\]

\[
E = 130 \pm 2.8 \text{ MeV} \\
Q = 4.5 \pm 1 \text{ pC}
\]

Thank you for your attention!